PlacementHub

TRUE DISCOUNT


TRUE DISCOUNT
IMPORTANT CONCEPTS
Suppose a man has to pay Rs. 156 after 4 years and the rate of
interest is 14% per annum. Clearly, Rs. 100 at 14% will amount to
Rs. 156 in 4 years. So, the payment of Rs. 100 now will clear off
the debt of Rs. 156 due 4 years hence. We say that:
Sum due = Rs. 156 due 4 years hence;
Present Worth (P.W.) = Rs. 100;
True Discount (T.D.) = Rs. (156 - 100) = Rs. 56
(Sum due) - (P.W.).
We define : T.D. = Interest on P.W.
Amount = (P.W.) + (T.D.).
Interest is reckoned on P.W. and true discount is reckoned on the
amount.
IMPORTANT FORMULAE
Let rate = R% per annum and Time = T years. Then,
1. P.W.=[100 x Amount /100 + (R x T)
=100 x T.D./ RxT
2. T.D.=[(P.W.) x R x T /100]
= [ Amount x RxT/100 + (R x T)]
3.(S.I.)*(T.D.) /(S.I.)-(T.D.)
4. (S.I.) - (T.D.) - S.I. on T.D.
5. When the sum is put at compound interest, then
P.W. = Amount/[1 +R/100]^T
SOLVED EXAMPLES
Ex. 1. Find the present worth of Rs. 930 due 3 years hence at
8% per annum. Also find the discount.
Sol.
P.W=100 x Amount /[100 + (R x T)]
=Rs.100 x 930/100+ (8x3)
= (100x930)/124
= Rs. 750,
T.D. = (Amount) - (P.W.) = Rs. (930 - 750) = Rs. 180.
Ex. 2. The true discount on a bill due 9 months hence at 12%
per annum is Rs. Find the amount of the bill and its present
worth.
Sol. Let amount be Rs. x. Then,
x*R*T/100 + (R x T)
=T.D.
=>x * 12*3/ 4/[100+[12*3/4]]
=540
x= 540x109 = Rs.6540
Amount - Rs. 6540. P.W. = Rs. (6540 - 540) - Rs. 6000.
Ex. 3. The true discount on a certain sum of money due 3 years
hence is Rb. 250 and the simple interest on the same sum for
the same time and at the same rate is Rs. 375. Find the sum
and the rate percent.
Sol. T.D. = Rs. 250 and S.I. = Rs. 375.
Sum due =S.I. xT.D./ S.I. -T.D.
=375x250/375- 250
=Rs.750.
Rate=[100*375/750*3]%=16 2/3%
Ex. 4. The difference between the simple interest and true
discount on a certain sum
of money for 6 months at 12—% per annum is Rs. 25. Find the
sum.
Sol. Let the sum be Rs. x. Then,
T.D. = (x*25/2*1/2)/(100+(25/2*1/2))=x*25/4*4/425=x/17
S.I=x*25/2*1/2*1/100=x/16
x/16-x/17=25
=>17x-16x=25*16*17
=>x=6800
Hence, sum due = Rs. 6800.
Ex. 5. A bill falls due in 1 year. The creditor agrees to accept
immediate payment of the half and to defer the payment of the
other half for 2 years. By this arrangement
ins Rb. 40. What is the amount of the bill, if the money be
worth 12-z% ?
Sol. Let the sum be Rs. x. Then,
[x/2+(x/2*100)/100+(25/2*2)]-[(x*100)/(100+25/2*1]
=40
=>x/2+2x/5-8x/9=40
=>x=3600
Amount of the bill - Rs. 3600.